绕开算力限制,如何用单 GPU 微调 LLM?这是一份「梯度累积」算法教程|环球热头条

来源:机器之心时间:2023-05-13 14:07:34

选自 lightning.ai

机器之心编译


(资料图)

编辑:王楷

让算力资源用到极致,是每一位开发者的必修课。

自从大模型变成热门趋势之后,GPU 就成了紧俏的物资。很多企业的储备都不一定充足,更不用说个人开发者了。有没有什么方法可以更高效的利用算力训练模型?

在最近的一篇博客,Sebastian Raschka 介绍了「梯度累积」的方法,能够在 GPU 内存受限时使用更大 batch size 训练模型,绕开硬件限制。

在此之前,Sebastian Raschka 也分享过一篇运用多 GPU 训练策略加速大型语言模型微调的文章,包括模型或 tensor sharding 等机制,这些机制将模型权重和计算分布在不同的设备上,以解决 GPU 的内存限制。

微调 BLOOM 模型进行分类

假设我们有兴趣采用近期预训练的大型语言模型来处理文本分类等下游任务。那么,我们可能会选择使用 GPT-3 的开源替代品 BLOOM 模型,特别是「仅有」 5.6 亿个参数的 BLOOM 版本 —— 它应该可以毫无问题地融入至传统 GPU 的 RAM 中(Google Colab 免费版本拥有 15 Gb RAM 的 GPU ) 。

一旦开始,就很可能遇到问题:内存会在训练或微调期间迅速增加。训练这个模型的唯一方法是使批大小为 1(batch size=1)。

使用批大小为 1(batch size=1)为目标分类任务微调 BLOOM 的代码如下所示。你也可以在 GitHub 项目页面下载完整代码:

https://github.com/rasbt/gradient-accumulation-blog/blob/main/src/1_batchsize-1.py

你可以将此代码直接复制并粘贴到 Google Colab 中,但还必须将随附的 local_dataset_utilities.py 文件拖放到从该文件导入了一些数据集实用程序的同一文件夹中。

# pip install torch lightning matplotlib pandas torchmetrics watermark transformers datasets -U

import osimport os.path as opimport time

from datasets import load_datasetfrom lightning import Fabricimport torchfrom torch.utils.data import DataLoaderimport torchmetricsfrom transformers import AutoTokenizerfrom transformers import AutoModelForSequenceClassificationfrom watermark import watermark

from local_dataset_utilities import download_dataset, load_dataset_into_to_dataframe, partition_datasetfrom local_dataset_utilities import IMDBDataset

def tokenize_text ( batch ) : return tokenizer ( batch [ "text" ] , truncation=True, padding=True, max_length=1024 )

def train ( num_epochs, model, optimizer, train_loader, val_loader, fabric ) :

for epoch in range ( num_epochs ) : train_acc = torchmetrics.Accuracy ( task="multiclass", num_classes=2 ) .to ( fabric.device )

for batch_idx, batch in enumerate ( train_loader ) : model.train ( )

### FORWARD AND BACK PROP outputs = model ( batch [ "input_ids" ] , attention_mask=batch [ "attention_mask" ] , labels=batch [ "label" ] )

fabric.backward ( outputs [ "loss" ] )

### UPDATE MODEL PARAMETERS optimizer.step ( ) optimizer.zero_grad ( )

### LOGGING if not batch_idx % 300: print ( f"Epoch: {epoch+1:04d}/{num_epochs:04d}" f"| Batch {batch_idx:04d}/{len ( train_loader ) :04d}" f"| Loss: {outputs [ "loss" ] :.4f}" )

model.eval ( ) with torch.no_grad ( ) : predicted_labels = torch.argmax ( outputs [ "logits" ] , 1 ) train_acc.update ( predicted_labels, batch [ "label" ] )

### MORE LOGGING model.eval ( ) with torch.no_grad ( ) : val_acc = torchmetrics.Accuracy ( task="multiclass", num_classes=2 ) .to ( fabric.device ) for batch in val_loader: outputs = model ( batch [ "input_ids" ] , attention_mask=batch [ "attention_mask" ] , labels=batch [ "label" ] ) predicted_labels = torch.argmax ( outputs [ "logits" ] , 1 ) val_acc.update ( predicted_labels, batch [ "label" ] )

print ( f"Epoch: {epoch+1:04d}/{num_epochs:04d}" f"| Train acc.: {train_acc.compute ( ) *100:.2f}%" f"| Val acc.: {val_acc.compute ( ) *100:.2f}%" ) train_acc.reset ( ) , val_acc.reset ( )

if __name__ == "__main__":

print ( watermark ( packages="torch,lightning,transformers", python=True ) ) print ( "Torch CUDA available?", torch.cuda.is_available ( ) ) device = "cuda" if torch.cuda.is_available ( ) else "cpu"

torch.manual_seed ( 123 ) # torch.use_deterministic_algorithms ( True )

########################## ### 1 Loading the Dataset ########################## download_dataset ( ) df = load_dataset_into_to_dataframe ( ) if not ( op.exists ( "train.csv" ) and op.exists ( "val.csv" ) and op.exists ( "test.csv" ) ) : partition_dataset ( df )

imdb_dataset = load_dataset ( "csv", data_files={ "train": "train.csv", "validation": "val.csv", "test": "test.csv", }, )

######################################### ### 2 Tokenization and Numericalization #########################################

tokenizer = AutoTokenizer.from_pretrained ( "bigscience/bloom-560m", max_length=1024 ) print ( "Tokenizer input max length:", tokenizer.model_max_length, flush=True ) print ( "Tokenizer vocabulary size:", tokenizer.vocab_size, flush=True )

print ( "Tokenizing ...", flush=True ) imdb_tokenized = imdb_dataset.map ( tokenize_text, batched=True, batch_size=None ) del imdb_dataset imdb_tokenized.set_format ( "torch", columns= [ "input_ids", "attention_mask", "label" ] ) os.environ [ "TOKENIZERS_PARALLELISM" ] = "false"

######################################### ### 3 Set Up DataLoaders #########################################

train_dataset = IMDBDataset ( imdb_tokenized, partition_key="train" ) val_dataset = IMDBDataset ( imdb_tokenized, partition_key="validation" ) test_dataset = IMDBDataset ( imdb_tokenized, partition_key="test" )

train_loader = DataLoader ( dataset=train_dataset, batch_size=1, shuffle=True, num_workers=4, drop_last=True, )

val_loader = DataLoader ( dataset=val_dataset, batch_size=1, num_workers=4, drop_last=True, )

test_loader = DataLoader ( dataset=test_dataset, batch_size=1, num_workers=2, drop_last=True, )

######################################### ### 4 Initializing the Model #########################################

fabric = Fabric ( accelerator="cuda", devices=1, precision="16-mixed" ) fabric.launch ( )

model = AutoModelForSequenceClassification.from_pretrained ( "bigscience/bloom-560m", num_labels=2 )

optimizer = torch.optim.Adam ( model.parameters ( ) , lr=5e-5 )

model, optimizer = fabric.setup ( model, optimizer ) train_loader, val_loader, test_loader = fabric.setup_dataloaders ( train_loader, val_loader, test_loader )

######################################### ### 5 Finetuning #########################################

start = time.time ( ) train ( num_epochs=1, model=model, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader, fabric=fabric, )

end = time.time ( ) elapsed = end-start print ( f"Time elapsed {elapsed/60:.2f} min" )

with torch.no_grad ( ) : model.eval ( ) test_acc = torchmetrics.Accuracy ( task="multiclass", num_classes=2 ) .to ( fabric.device ) for batch in test_loader: outputs = model ( batch [ "input_ids" ] , attention_mask=batch [ "attention_mask" ] , labels=batch [ "label" ] ) predicted_labels = torch.argmax ( outputs [ "logits" ] , 1 ) test_acc.update ( predicted_labels, batch [ "label" ] )

print ( f"Test accuracy {test_acc.compute ( ) *100:.2f}%" )

作者使用了 Lightning Fabric,因为它可以让开发者在不同硬件上运行此代码时灵活地改变 GPU 数量和多 GPU 训练策略。它还允许仅通过调整查准率 flag 来启用混合精度训练(mixed-precision training)。在这种情况下,混合精度训练可以将训练速度提高三倍,并将内存需求降低约 25%。

上面展示的主要代码都是在主函数(if __name__ == "__main__" 的 context)中执行的,即使只使用单个 GPU,也推荐使用 PyTorch 运行环境执行多 GPU 训练。而后,包含在 if __name__ == "__main__" 中的以下三个代码部分负责数据加载:

# 1 加载数据集

# 2 token 化和数值化

# 3 设置数据加载器

第 4 节是初始化模型(Initializing the Model)中,然后在第 5 节 微调(Finetuning)中,调用 train 函数,这是开始让事情变得有趣的地方。在 train ( ... ) 函数中,实现了标准的 PyTorch 循环。核心训练循环的注释版本如下所示:

批大小为 1(Batch size=1)的问题是梯度更新将会变得非常混乱和困难,正如下述训练模型时基于波动的训练损失和糟糕的测试集性能所看到的:

...torch : 2.0.0lightning : 2.0.0transformers: 4.27.2

Torch CUDA available? True...Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0969Epoch: 0001/0001 | Batch 24000/35000 | Loss: 1.9902Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0395Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.2546Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.1128Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.2661Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0044Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0067Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0468Epoch: 0001/0001 | Batch 26400/35000 | Loss: 1.7139Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.9570Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.1857Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0090Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.9790Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0503Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.2625Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.1010Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0035Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0009Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0234Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.8394Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.9497Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.1437Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.1317Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0112Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0073Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.7393Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0512Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.1337Epoch: 0001/0001 | Batch 32400/35000 | Loss: 1.1875Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.2727Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.1545Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0022Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.2681Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.2467Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0620Epoch: 0001/0001 | Batch 34500/35000 | Loss: 2.5039Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0131Epoch: 0001/0001 | Train acc.: 75.11% | Val acc.: 78.62%Time elapsed 69.97 minTest accuracy 78.53%

由于没有多的 GPU 可用于张量分片(tensor sharding),又能做些什么来训练具有更大批大小(batch size)的模型呢?

其中一种解决方法就是梯度累积,可以通过它来修改前面提到的训练循环。

什么是梯度积累?

梯度累积是一种在训练期间虚拟增加批大小(batch size)的方法,当可用的 GPU 内存不足以容纳所需的批大小时,这非常有用。在梯度累积中,梯度是针对较小的批次计算的,并在多次迭代中累积(通常是求和或平均),而不是在每一批次之后更新模型权重。一旦累积梯度达到目标「虚拟」批大小,模型权重就会使用累积梯度进行更新。

参考下面更新的 PyTorch 训练循环:

如果将 accumulation_steps 设置为 2,那么 zero_grad ( ) 和 optimizer.step ( ) 将只会每隔一秒调用一次。因此,使用 accumulation_steps=2 运行修改后的训练循环与将批大小(batch size)加倍具有相同的效果。

例如,如果想使用 256 的批大小,但只能将 64 的批大小放入 GPU 内存中,就可以对大小为 64 的四个批执行梯度累积。(处理完所有四个批次后,将获得相当于单个批大小为 256 的累积梯度。)这样能够有效地模拟更大的批大小,而无需更大的 GPU 内存或跨不同设备的张量分片。

虽然梯度累积可以帮助我们训练具有更大批量大小的模型,但它不会减少所需的总计算量。实际上,它有时会导致训练过程略慢一些,因为权重更新的执行频率较低。尽管如此,它却能帮我们解决限制问题,即批大小非常小时导致的更新频繁且混乱。

例如,现在让我们运行上面的代码,批大小为 1,需要 16 个累积步骤(accumulation steps)来模拟批大小等于 16。

输出如下:

...torch : 2.0.0lightning : 2.0.0transformers: 4.27.2

Torch CUDA available? True...Epoch: 0001/0001 | Batch 23700/35000 | Loss: 0.0168Epoch: 0001/0001 | Batch 24000/35000 | Loss: 0.0006Epoch: 0001/0001 | Batch 24300/35000 | Loss: 0.0152Epoch: 0001/0001 | Batch 24600/35000 | Loss: 0.0003Epoch: 0001/0001 | Batch 24900/35000 | Loss: 0.0623Epoch: 0001/0001 | Batch 25200/35000 | Loss: 0.0010Epoch: 0001/0001 | Batch 25500/35000 | Loss: 0.0001Epoch: 0001/0001 | Batch 25800/35000 | Loss: 0.0047Epoch: 0001/0001 | Batch 26100/35000 | Loss: 0.0004Epoch: 0001/0001 | Batch 26400/35000 | Loss: 0.1016Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0021Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0008Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0060Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0001Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0426Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0012Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0025Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0025Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0000Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0495Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0164Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0067Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0037Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0005Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0013Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0112Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0053Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0012Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1365Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0210Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0374Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0341Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.0259Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0005Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4792Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0003Epoch: 0001/0001 | Train acc.: 78.67% | Val acc.: 87.28%Time elapsed 51.37 minTest accuracy 87.37%

根据上面的结果,损失的波动比以前小了。此外,测试集性能提升了 10%。由于只迭代了训练集一次,因此每个训练样本只会遇到一次。训练用于 multiple epochs 的模型可以进一步提高预测性能。

你可能还会注意到,这段代码的执行速度也比之前使用的批大小为 1 的代码快。如果使用梯度累积将虚拟批大小增加到 8,仍然会有相同数量的前向传播(forward passes)。然而,由于每八个 epoch 只更新一次模型,因此反向传播(backward passes)会很少,这样可更快地在一个 epoch(训练轮数)内迭代样本。

结论

梯度累积是一种在执行权重更新之前通过累积多个小的批梯度来模拟更大的批大小的技术。该技术在可用内存有限且内存中可容纳批大小较小的情况下提供帮助。

但是,首先请思考一种你可以运行批大小的场景,这意味着可用内存大到足以容纳所需的批大小。在那种情况下,梯度累积可能不是必需的。事实上,运行更大的批大小可能更有效,因为它允许更多的并行性且能减少训练模型所需的权重更新次数。

总之,梯度累积是一种实用的技术,可以用于降低小批大小干扰信息对梯度更新准确性的影响。这是迄今一种简单而有效的技术,可以让我们绕过硬件的限制。

PS:可以让这个运行得更快吗?

没问题。可以使用 PyTorch 2.0 中引入的 torch.compile 使其运行得更快。只需要添加一些 model = torch.compile,如下图所示:

GitHub 上提供了完整的脚本。

在这种情况下,torch.compile 在不影响建模性能的情况下又减少了十分钟的训练时间:

poch: 0001/0001 | Batch 26400/35000 | Loss: 0.0320Epoch: 0001/0001 | Batch 26700/35000 | Loss: 0.0010Epoch: 0001/0001 | Batch 27000/35000 | Loss: 0.0006Epoch: 0001/0001 | Batch 27300/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 27600/35000 | Loss: 0.0157Epoch: 0001/0001 | Batch 27900/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 28200/35000 | Loss: 0.0540Epoch: 0001/0001 | Batch 28500/35000 | Loss: 0.0035Epoch: 0001/0001 | Batch 28800/35000 | Loss: 0.0016Epoch: 0001/0001 | Batch 29100/35000 | Loss: 0.0015Epoch: 0001/0001 | Batch 29400/35000 | Loss: 0.0008Epoch: 0001/0001 | Batch 29700/35000 | Loss: 0.0877Epoch: 0001/0001 | Batch 30000/35000 | Loss: 0.0232Epoch: 0001/0001 | Batch 30300/35000 | Loss: 0.0014Epoch: 0001/0001 | Batch 30600/35000 | Loss: 0.0032Epoch: 0001/0001 | Batch 30900/35000 | Loss: 0.0004Epoch: 0001/0001 | Batch 31200/35000 | Loss: 0.0062Epoch: 0001/0001 | Batch 31500/35000 | Loss: 0.0032Epoch: 0001/0001 | Batch 31800/35000 | Loss: 0.0066Epoch: 0001/0001 | Batch 32100/35000 | Loss: 0.0017Epoch: 0001/0001 | Batch 32400/35000 | Loss: 0.1485Epoch: 0001/0001 | Batch 32700/35000 | Loss: 0.0324Epoch: 0001/0001 | Batch 33000/35000 | Loss: 0.0155Epoch: 0001/0001 | Batch 33300/35000 | Loss: 0.0007Epoch: 0001/0001 | Batch 33600/35000 | Loss: 0.0049Epoch: 0001/0001 | Batch 33900/35000 | Loss: 0.1170Epoch: 0001/0001 | Batch 34200/35000 | Loss: 0.0002Epoch: 0001/0001 | Batch 34500/35000 | Loss: 0.4201Epoch: 0001/0001 | Batch 34800/35000 | Loss: 0.0018Epoch: 0001/0001 | Train acc.: 78.39% | Val acc.: 86.84%Time elapsed 43.33 minTest accuracy 87.91%

请注意,与之前相比准确率略有提高很可能是由于随机性。

原文链接:https://lightning.ai/pages/blog/gradient-accumulation/

THE END

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

关键词:

相关阅读

推荐阅读

银鹏控股公司:业务交流促提升互学互鉴共进步|世

3月2日,银鹏控股公司董事长刘懿婷带队前往中粮集团期货公司进行业务学习和交流。中粮期货公司从业多年、具有丰富实战经验的风险管理专家现场更多

2023-03-07 17:52:41

我国首个万吨级钠离子电池材料项目在山西综改区开

山西晚报讯(记者温丽芳通讯员张晓茹)日前,总投资约11亿元的山西华钠铜能(碳能)科技有限责任公司万吨级钠离子电池正(负)极材料项目在山更多

2023-03-07 11:51:14

建行阳江市分行:践行金融惠民理念-全球关注

2月24日,随着客户办妥抵押登记手续并成功放款,标志着阳江市建行“带押过户”业务取得历史性突破。根据中国人民银行发布《关于鼓励推广二手房更多

2023-03-07 11:53:21

焦点简讯:证监会同意三超新材向特定对象发行股票

中证网讯(记者昝秀丽)证监会网站3月6日消息,证监会发布关于同意南京三超新材料股份有限公司向特定对象发行股票注册的批复。【来源:中国证更多

2023-03-07 09:57:39

美股航空股6日全线走低

中证网讯(记者赵中昊)当地时间周一(3月6日),美股航空股全线走低。据wind数据,截至收盘,波音跌1 49%,美国航空跌1 47%,达美航空跌1%,更多

2023-03-07 09:43:44

世界热资讯!晋钢控股集团荣登2022山西省品牌十强

近日,“品牌强国(龙城)论坛”在太原举行,发布“2022中国上市公司品牌500强”以及“2022山西省品牌100强”。晋钢控股集团以218 9亿元的品牌更多

2023-03-06 17:38:52

手绘报告:2023预期目标

【来源:中国政府网】声明:转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请作者持权属证明发至邮箱newmedia@xx更多

2023-03-06 16:46:31

惠州首笔数字人民币缴纳税费业务成功落地

3月1日,TCL科技集团财务有限公司拿到了全市第一张使用数字人民币账户缴纳税款和非税收入的完税凭证,标志着惠州市首笔数字人民币缴纳税费业务更多

2023-03-06 11:50:50
    2022年三季报披露后,北京商报记者根据企业公告选取了30家上市房...
    首套房公积金利率下调原来贷款也下调吗首套房公积金利率下调原来...
    政府回购商品房意味着什么政府收购商品房的首要目的是稳定市场。...
    把自己房子卖了再买算首套房吗买过一套房卖了再买算首套房。简单...
    买房交首付注意事项有哪些1、核实开发商五证。在交首付时,需要先...
    房屋契税征收比例契税税率的缴纳一般分为以下几种情况:1、面积小...

关于我们 Copyright   2015-2022 当代财经网  www.ddcjw.cn 版权所有  备案号:京ICP备2021034106号-19  联系邮箱:55 16 53 8 @qq.com